skip to main content


Search for: All records

Creators/Authors contains: "Zhao, Fuheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. System operators are often interested in extracting different feature streams from multi-dimensional data streams; and reporting their distributions at regular intervals, including the heavy hitters that contribute to the tail portion of the feature distribution. Satisfying these requirements to increase data rates with limited resources is challenging. This paper presents the design and implementation of Panakos that makes the best use of available resources to report a given feature's distribution accurately, its tail contributors, and other stream statistics (e.g., cardinality, entropy, etc.). Our key idea is to leverage the skewness inherent to most feature streams in the real world. We leverage this skewness by disentangling the feature stream into hot, warm, and cold items based on their feature values. We then use different data structures for tracking objects in each category. Panakos provides solid theoretical guarantees and achieves high performance for various tasks. We have implemented Panakos on both software and hardware and compared Panakos to other state-of-the-art sketches using synthetic and real-world datasets. The experimental results demonstrate that Panakos often achieves one order of magnitude better accuracy than the state-of-the-art solutions for a given memory budget. 
    more » « less
  2. Linear sketches have been widely adopted to process fast data streams, and they can be used to accurately answer frequency estimation, approximate top K items, and summarize data distributions. When data are sensitive, it is desirable to provide privacy guarantees for linear sketches to preserve private information while delivering useful results with theoretical bounds. We show that linear sketches can ensure privacy and maintain their unique properties with a small amount of noise added at initialization. From the differentially private linear sketches, we showcase that the state-of-the-art quantile sketch in the turnstile model can also be private and maintain high performance. Experiments further demonstrate that our proposed differentially private sketches are quantitatively and qualitatively similar to noise-free sketches with high utilization on synthetic and real datasets. 
    more » « less
  3. Recently the long standing problem of optimal construction of quantile sketches was resolved by K arnin, L ang, and L iberty using the KLL sketch (FOCS 2016). The algorithm for KLL is restricted to online insert operations and no delete operations. For many real-world applications, it is necessary to support delete operations. When the data set is updated dynamically, i.e., when data elements are inserted and deleted, the quantile sketch should reflect the changes. In this paper, we propose KLL ± , the first quantile approximation algorithm to operate in the bounded deletion model to account for both inserts and deletes in a given data stream. KLL ± extends the functionality of KLL sketches to support arbitrary updates with small space overhead. The space bound for KLL ± is [EQUATION], where ∈ and δ are constants that determine precision and failure probability, and α bounds the number of deletions with respect to insert operations. The experimental evaluation of KLL ± highlights that with minimal space overhead, KLL ± achieves comparable accuracy in quantile approximation to KLL. 
    more » « less